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Abstract

A current thrust in medical research is the development of a non-invasive method for detection, localization,
and characterization of an arterial stenosis (a blockage or partial blockage in an artery). A method has been
proposed to detect shear waves in the chest cavity which have been generated by disturbances in the blood flow
resulting from a stenosis. In order to develop this methodology further, we use one-dimensional shear wave
experimental data from novel acoustic phantoms to validate a corresponding viscoelastic mathematical model.
We estimate model parameters which give a good fit (in a sense to be precisely defined) to the experimental data,
and use asymptotic error theory to provide confidence intervals for parameter estimates. Finally, since a robust
error model is necessary for accurate parameter estimates and confidence analysis, we include a comparison of
absolute and relative models for measurement error.
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1 Introduction

Coronary artery disease (CAD) is an increasingly prevalent medical condition, often a precursor to and cause of
a patient experiencing cardiac arrest. Current methods for detection of arterial stenoses (blocked arteries) include
the angiogram and CT scans. Angiograms are viable but quite invasive, while CT scans are expensive, introduce
radiation into the patient, and can only detect hard plaques (blockages). A desirable new detection method would
be noninvasive and less expensive but still effective. To this end, using acoustic waves generated by stenoses has
been proposed. This would place sensors on the surface of the chest to listen for sounds from coronary arteries, with
the hope of detecting and then localizing any blockages.

The current understanding (see, e.g., [8, 26, 45]) of the process is that turbulent flow produces normal forces
on the vessel walls at and downstream of a stenosis, which then exert pressure on the vessels wall causing a small
displacement in the surrounding soft tissue. Previous work (e.g. [2, 32, 46, 43, 44, 52, 56]) has demonstrated the
existence of such sounds, and that they are possible to detect on the surface of the chest. We thus see that the
system couples two processes: (1) the generation of pressure and shear waves transmitted into the body through the
arterial wall as a result of the turbulent blood flow generated by a stenosis, and (2) the propagation of pressure and
shear waves through the chest to sensors attached to the chest wall. The first process is not completely understood,
though some ideas are present in the literature. Various researchers [24, 25, 26, 36, 39, 41, 45, 48, 49, 55, 59] have
directly examined modeling blood flow through arteries. All have attempted to characterize the turbulence in the
flow, which some then used to examine the sound field propagated into the chest. In the current work, we will
not focus on aspects of turbulent flow, leaving that instead as an input to be later properly characterized when the
stenosed artery situation is modeled directly. We will focus on the second process, understanding the propagation of
sounds through the chest cavity which result from stenosed coronary arteries.

The modeling and detection of waves transmitted through the body has been approached in different ways. One
approach has focused on characterizing properties of the sounds detected on the surface of the chest, characterizing
aspects such as primary frequencies that these sounds exhibit. This line of work has been studied by Semmlow, et
al., [2, 3, 4, 5, 6, 47, 53, 54, 61], as well as by other groups [24, 25, 26, 34, 46, 56, 57, 58]. Their methods are based
on general sound features and detection through statistical methods, rather than modeling the underlying physics of
sound transmission through the body. These methods have the benefit of being fast and fairly simple to implement,
but do not provide a characterization for the mechanisms of wave transmission.

In another direction, more relevant to the situation this paper will study, researchers have worked to model
the physics of sound wave transmission through the body. As is common in many physical wave phenomena, both
pressure and shear waves propagate into the body as a result of stenosed coronary arteries. Since shear waves in
general have a lower amplitude than pressure waves, intuition might suggest detecting pressure waves should be our
focus; past research indicates the opposite is true when seeking to detect stenoses. Various groups [28, 30, 40, 45]
have demonstrated that shear waves should be the focus of detection efforts. The frequency ranges for shear waves
resulting from coronary stenoses are below 2000 Hz [25, 28, 29, 33, 51, 53]. In the range of these frequencies, the
pressure waves propagate very quickly while shear waves propagate much more slowly, which in practice means that
pressure waves are difficult to measure. Furthermore, the lower speed of shear waves implies a shorter wavelength
for a given frequency, thus providing better spatial resolution when attempting to localize a stenosis. Also, in the
context of waves propagating in tissue or tissue-mimicking materials, shear waves are measurable at greater distances
from the source of the disturbance (see, e.g., Figures 9b and 10 of [28]). Thus, in this work we also focus on studying
a model for shear wave propagation (though results where we also test a pressure wave model are available in a
technical report [14]).

The benefits of using a viscoelastic wave propagation model in various contexts have been previously studied
[28, 30, 31, 33, 37, 40, 51]. In these references, the authors focused on determining the elastic modulus and viscoelastic
parameter based on the shear wave speed and attenuation in either a gel mold or physical tissue, in both a stenosis
context and general tissue shear wave propagation. The models were developed using plane waves in such a way
that algebraic expressions were available for shear wave speed as a function of frequency, elastic modulus, and the
viscoelastic parameter. These demonstrate that modeling the underlying physics is not only possible, but quite
beneficial in understanding shear wave propagation. These investigators also showed that a Kelvin-Voigt damping
model is most appropriate for the situation; we will incorporate this into our model (and will discuss it more fully
below).

In this work, we will take the physical models further, developing a dynamic model of the shear waves propagating
through a tissue-mimicking material. Our goal will be to use this viscoelastic model with data from a tissue-mimicking
homogeneous gel mold to validate the model and understand the uncertainty in the model parameters. The model
here will incorporate the standard elastic modulus and bulk viscoelastic parameter, as well as internal variables
governed by relaxation times which can be used to model how different portions of the medium relax in different

2



ways from being stressed. We will develop the model in such a way as to allow for multiple internal variables. In
future studies these can be used to model the bulk effects of different types of tissue, which would be closer to the
in vivo detection problem.

The model here will continue from a previous line of work by Banks, et al., [8, 18, 19, 20, 21, 42, 50]. These
models allow for a characterization of shear waves resulting from coronary stenoses, which will assist in uncovering
the coronary artery sounds from the noisy background in the body. Initial experiments were conducted where a
gel mold was built with a tube running through the middle; cases where the tube was unblocked were compared to
those with partial blockages, and the results suggested that there were significant differences in sound generation
between the blocked and unblocked cases. Unfortunately, this line of work ended before experimental data could be
incorporated and used to validate models. The current work returns to a one-dimensional model and experimental
setup, developing a model closely related to that in [8] which we validate with lab data from a homogeneous gel
phantom and use to examine uncertainty in our parameter estimates. This work will examine confidence in the
relaxation times, which will demonstrate that the addition of internal variables into the model is viable.

We now summarize the goals and direction for the current work. Here, we incorporate all of the aforementioned
physical modeling concerns and continue the work of our concept paper [13] by focusing on wave propagation through
a homogeneous viscoelastic medium. The constitutive relationship will be slightly more general than in our concept
paper, and is based on Fung’s viscoelastic formulation that has been validated by actual tissue experimental data
(more details below). This relationship will be used in one-dimensional shear wave dynamical models to compute
inverse problem results for the one-dimensional case using experimental data from a tissue-mimicking gel mold. This
data comes from novel acoustic phantoms built and tested at Queen Mary, University of London (QMUL) and Barts
Health Trust (BHT) in England. The data will be taken in such a way that measured displacements upon releasing
a load are primarily affected by the properties of the medium. Displacement data for our case encodes the frequency
and attenuation properties of the medium, which we then quantify through model parameter estimation. This will
firmly set the groundwork for future investigations into validating the model in a more complex medium, as well
as investigation into a proper description of an input for the wave propagation model; this input would result from
models of the sounds (arterial wall displacements) due to turbulent blood flow resulting from a stenosis.

2 Experimental Setup

A novel experiment has been devised at QMUL to gather one-dimensional shear data. Devices have been designed
(see left pane of Figure 1), in which an agar gel mold phantom (homogeneous, 97% water, density ρ = 1010 kg/m3) is
loaded into the rig, a weight is attached applying stress to the phantom, and then the weight is released, causing the
material to oscillate. The displacement motion of the material throughout the experiment is measured with a laser
device. This motion is due to the material response to the weight release, and thus encodes information about the
material characteristics (elastic modulus, damping characteristics, etc.). The choice of loading and a quick release is
designed to produce dynamic data; the idea was inspired in part by the impacts the stenosed vessel wall experiences
with each heartbeat and also by past success in gathering shear data for filled rubber elastomers using an initially
loaded rubber sample which then underwent an impulsive hammer hit (see e.g. [18, 19]). This yields one-dimensional
shear data in the radial direction perpendicular to the vertical axis (right pane of Figure 1).
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Figure 1: Shear configuration, where LDT denotes the laser displacement transducer. (left) Experimental setup of
agar phantom. (right) Schematic with one-dimensional domain denoted.
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In this work, we focus on results generated from a load weight of 264 g, as this weight level produces a well-defined
response. In the future, we may also incorporate data from smaller weight levels in order to examine the different
phantom responses to other weight levels. The gel phantoms were stored in water when not in use, which keeps the
gel at the desired 97% water composition.

When the experiment is conducted, data like those depicted in Figure 2 are produced. The material is at rest,
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Figure 2: Sample one-dimensional data. Loading of the material (initially at rest) begins at t = Γ1, and the material
is loaded and continues to relax for t ∈ (Γ2,Γ3). At time Γ3 the load is cut which takes roughly 10–15 ms. The gel
is then freely oscillating at Γ4 = 0, and oscillations continue for a period of time dependent on the loading weight.
The value A is the displacement of the material at the beginning of free oscillations. The overall displacement scale
of the data is on the order of 10−4 m, while the oscillations immediately after the weight release are on the order of
10−5 m.

a weight is added and allowed to settle, then the string holding the weight is rapidly cut with a flame to allow the
material to freely oscillate. Once oscillations have died out the material relaxes back toward a stable state. The key
pieces that will be modeled are the loading profile (loading begins at t = Γ1 and lasts until the weight begins to be
released at t = Γ3), which we will model as instantaneous loading to position A, and the oscillations after weight
release (free oscillations begin at t = Γ4 = 0) which are the main object of investigations here. For more information
on the experimental setup, interested readers may refer to [27].

3 Model Development and Constitutive Equation

With the setup of the experiment in mind, we can turn to our mathematical model of wave propagation. The model
will be developed to take into account all features of the data, including the loading profile and the relaxation present
in data. Since our phantom is cylindrical, the model development begins with three-dimensional equations of motion
in cylindrical coordinates. These are given in [50, p.20], and also in [42], and are derived from momentum and mass
balance principles. Using the fact that the gel is homogeneous and that there are symmetries in the experimental
design, these three-dimensional equations can be reduced to simplified one-dimensional model.

Let u(r, t) represent the displacement of the material at position r and time t, with r ∈ (rmin, rmax) (for our
device, rmin = 0.0105 m and rmax = 0.054 m) and t > Γ1, where the time Γ1 is chosen as the beginning of any
stress-strain history in the material, and we are assuming the material has been at rest long enough that it is only
affected by displacements for t > Γ1. Then the governing partial differential equation (PDE) becomes

ρ
∂2

∂t2
u(r, t) −

∂

∂r
σ(r, t) −

σ(r, t)

r
= 0

σ(rmin, t) = g(t), u(rmax, t) = 0

u(r,Γ1) = 0, ut(r,Γ1) = 0,

(1)

where ρ is the density of the material, σ denotes the stress, g(t) is a function that describes the loading process
(to be discussed later). In order to complete these models, we must provide a form for σ. This is the constitutive
relationship, also called the stress-strain law since it relates strain (∂u

∂r
) and/or the strain rate to stress σ. The next

sections discuss this aspect of the model.
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3.1 Constitutive equation

We incorporate the previous modeling ideas together into a new constitutive equation for the shear wave PDEs (1).
We develop the constitutive equation which will be used in this work assuming that we will be solving the model
starting at t = Γ1 and thus incorporating both the loading process and oscillations into our dynamic equations, for
the time being. In Section 3.1.5, we will make an approximation to the loading process which will allow us to focus
on the dynamic oscillations of the material after the weight is released, which is our true interest.

3.1.1 Fung’s quasi-linear viscoelastic formulation

Some of the initial investigation into the viscoelastic nature of tissue was completed by Fung [35]. His work is of
particular interest because it was validated in actual tissue. Fung developed a “quasi-linear” model

σ(t) =

∫ t

Γ1

G(t− s)
dσe(λ(s))

ds
ds (2)

with a kernel of the form

G(t) =
1 + c

∫ τ2

τ1

1

τ
exp(−t/τ)dτ

1 + c ln(τ2/τ1)
. (3)

Within (2), λ represents the stretch of a material (λ = 1+ur) and σe describes the elastic response to the elongation
λ, given by (see [35, Sec. 7.6])

σe(λ) = −β + βeαur

where α and β are constants to be estimated. The parameters τ1 and τ2 are lower and upper bounds, respectively,
on relaxation times, which describe the ways in which the material responds to imposed stresses and strains. This
model incorporates a continuum τ ∈ [τ1, τ2] of relaxation times, which Fung found to be necessary in order for his
model to match the response of tissue, as well as a constant term in the kernel. This Fung kernel will serve as a
baseline for reference when developing the model for this paper.

3.1.2 Linearized constitutive equation

One could keep nonlinearities in the constitutive equation (2). However, we found (as we shall see later) that a linear
constitutive relationship gives a reasonable approximation to the data provided by QMUL and BHT. To that end,
we will use the first two terms of the Taylor expansion of eαur to approximate

σe ≈ −β + β(1 + αur) = βαur = ζur (4)

where we have combined ζ = βα into a single parameter to be estimated; ζ will be incorporated into other parameters
later in model development. We can then linearize (2) by using (4), add a Kelvin-Voigt damping term (a common
linear viscoelastic damping model [12]), and obtain

σ(t) = G1urt(t) + ζ

∫ t

Γ1

G(t− s)
dur(s)

ds
ds (5)

where G(t) is a kernel to be specified. To an extent, the Kelvin-Voigt term describes the overall nature of the damping
present in the material, while the kernel G(t) will incorporate different material responses at both the macroscopic
and microscopic levels.

3.1.3 Existence and uniqueness for shear wave model

Before moving on to the specific form of the constitutive equation kernel, we first establish existence and uniqueness
for the shear wave equations (1) with the constitutive equation (5). To that end, we set up a similar framework as in
the concept paper [13] and connect those results to the current work. We will require that the following assumptions
hold:

(A1) The boundary condition function satisfies g ∈ L2(Γ1, T );

(A2) The kernel G is differentiable with respect to t and with constants c1 and c2 such that |G(t)| ≤ c1 and |Ġ(t)| ≤ c2
for all t ∈ [Γ1, T ].
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Let H = L2(rmin, rmax), V = {φ|φ ∈ H1(rmin, rmax), φ(rmax) = 0}, and V
∗ denote the topological dual space

of V. We identify H with its topological dual H∗ and thus again obtain V →֒ H = H
∗ →֒ V

∗ as a Gelfand triple.
Let Cw(Γ1, T ;V) denote the set of weakly continuous functions in V on [Γ1, T ], and LT = {v : [Γ1, T ] → H | v ∈
Cw(Γ1, T ;V)∩ L2(Γ1, T ;V) and vt ∈ Cw(Γ1, T ;H)∩L2(Γ1, T ;V)}. The notion of weakly continuous (i.e., um → u in
Cw(Γ1, T ;V)) means that um → u weakly in V and uniformly in t ∈ [Γ1, T ]. Then a weak solution u ∈ LT for the
shear equation must satisfy

0 = ρ〈ut(t), ηt(t)〉 − ρ

∫ t

Γ1

〈us(s), ηs(s)〉ds +

∫ t

Γ1

g(s)η(rmin, s)ds + G1

∫ t

Γ1

〈usr(s), ηr(s)〉ds

+ζ

∫ t

Γ1

〈∫ s

Γ1

G(s− ξ)
d

dξ
ur(ξ)dξ, ηr(s)

〉

ds−G1

∫ t

Γ1

∫ rmax

rmin

urt(r, s)

r
η(r, s)drds

−ζ

∫ t

Γ1

∫ rmax

rmin

(
∫ s

Γ1

1

r
G(s− ξ)

dur(r, s)

dξ
dξ

)

η(r, s)drds

(6)

for any t ∈ [Γ1, T ] and η ∈ LT and where 〈·, ·〉 is the usual inner product. Since rmin > 0, there are no singularities in
the final term in (6), and the kernel integral in the numerator of that term will converge in the same manner as the
preceding kernel integral. Thus, the arguments from [13] apply in our case here, and we have the following theorem:

Theorem 3.1. Assuming (A1) and (A2), the shear equation (1) with constitutive relationship (5) has a unique weak
solution on any finite interval [Γ1, T ].

3.1.4 Form for constitutive equation kernel G(t)

We will now state the particular kernel used for this current work, and then manipulate it into a form that gives
more physical insight and which will later allow for a conceptual framework using internal variables. We develop
this kernel from a different perspective than that given in [13], but the resulting form will be quite similar. Using
the notation and parameter conventions of [12], we define the kernel in this work to be

G(t;P ) = κr + K(t;P ) (7)

where κr is a positive constant representing an instantaneous relaxation modulus (justified by the fact that our gel
phantom acts partly as a solid) and K(t;P ) =

∫

T
exp(−t/τ)dP (τ) represents a continuum of distributed relaxation

times with T = [τ1, τ2] ⊂ (0,∞) and where P (τ) is a probability measure on T . Note that this form for G satisfies
|G(t)| ≤ c1 with G clearly differentiable and |Ġ(t)| ≤ c2 for some constants c1, c2 so that assumption (A2) is satisfied.
It is also worth noting here that our proposed kernel form (7) is similar to that in Fung’s model (3), as we see that κr

serves as an analog to the constant portion of Fung’s kernel (i.e.,
1

1 + c ln(τ1/τ1)
) and the K(t;P ) portion is similar

to the the continuous relaxation spectrum in Fung’s model (i.e.,
c
∫ τ2

τ1

1

τ
exp(−t/τ)dτ

1 + c ln(τ2/τ1)
).

We substitute (7) into (5) and manipulate the form of the stress with integration by parts, noting that ur(Γ1) = 0
since the material is initially at rest and using the fact that K(0;P ) = 1:

σ(t;P ) = G1urt(t) + ζ

∫ t

Γ1

G(t− s)
dur(s)

ds
ds

= G1urt(t) + ζ

∫ t

Γ1

(κr + K(t− s;P ))
dur(s)

ds
ds

= (G + ζ) ur(t) + G1urt(t) − ζ

∫ t

Γ1

∂K(t− s;P )

∂s
ur(s)ds,

(8)

where G = κrζ and with slightly more detail in [14]. This equation (8) is the general form of the constitutive equation
used here. The value G0 = G + ζ can be considered to be a dynamic analog to the static shear modulus; this also
makes clear the fact that Hooke’s Law is incorporated into our model. We have already discussed that G1 is the bulk
damping parameter for the Kelvin-Voigt damping term. The final integral represents a history term which describes
the relaxation of the material in response to an applied stress/strain.

We will ultimately turn to a discretized distribution model (using a discrete measure P (τ)), and connect it
to the continuum model through a probability measure approximation as in [9]. This will allow us to develop a
computationally feasible inverse problem, and also give insight into the underlying material mechanics. But first we
briefly discuss a method for approximating the loading process.
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3.1.5 Approximating the loading process

Recalling Figure 2, the loading profile is relatively long compared with the oscillatory period; since our concern is with
modeling the oscillations, solving the model from Γ1 is much longer than necessary. Also, early experimentation with
the model indicated that the parameters governing the loading and resting process may differ from those governing
the very dynamic post-release oscillatory process.

We address these concerns by modeling the loading as instantaneous from at rest to a displacement of A at
position r = rmin. Since the material is linear, this would then mean the phantom has the profile

u(r, t) =
A(rmax − r)

rmax − rmin

, (9)

up until the time of the weight release. Since this is an approximation, we will neglect the times t ∈ (Γ3,Γ4), the
weight release time period, since that time frame is small relative to the loading and settling time from Γ1 to Γ3. We
also incorporate a time parameter Υ which will represent our approximation of the time when loading begins. In the
formulation here we will use the same relaxation times during the loading process as during the oscillation period,
which means that Υ has no meaning other than as a tuning parameter that we must estimate. Thus, we assume the
given loading profiles for t ∈ (Υ, 0) since Γ4 = 0 in our convention. This also means that Υ < 0.

We incorporate this loading approximation into our model by manually integrating the constitutive relationship
(8). For the purposes here, we will call σ̂ the full constitutive relationship for t > Υ that is described by (8) (where
we now use Υ in the place of Γ1), and σ the constitutive relationship for t > 0. We do this for notational simplicity
in the final model, at the expense of some minor notational confusion at the current stage. Note that (9) implies
that

ur(r, t) = −
A

rmax − rmin

, t ∈ (Υ, 0).

Hence, by (8) and the above equation we find

σ̂(t;P ) = (G + ζ)ur(t) + G1urt(t) − ζ

∫ t

Υ

∂K(t− s;P )

∂s
ur(s)ds

= (G + ζ)ur(t) + G1urt(t) − ζ

∫ 0

Υ

∂K(t− s;P )

∂s
ur(s)ds− ζ

∫ t

0

∂K(t− s;P )

∂s
ur(s)ds

= (G + ζ)ur(t) + G1urt(t) + ζ
A

rmax − rmin

(K(t;P ) −K(t− Υ;P )) − ζ

∫ t

0

∂K(t− s;P )

∂s
ur(s)ds

= σ(t;P ) −F(t; Υ, A, P ),

where σ and F are respectively given by

σ(t;P ) = (G + ζ) ur(t) + G1urt(t) − ζ

∫ t

0

∂K(t− s;P )

∂s
ur(s)ds, (10)

and

F(t; Υ, A, P ) = −ζ
A

rmax − rmin

(K(t;P ) −K(t− Υ;P ).

By (10), we then have the following:

• σ̂r = σr

• The original stress boundary condition is σ̂(rmin, t) = 0 for t > 0. Using the preceding development, this
corresponds with

0 = σ(rmin, t;P ) −F(t; Υ, A, P )

which allows us to write the boundary condition for a model solved for t > 0 as

σ(rmin, t;P ) = F(t; Υ, A, P ).

We note that the term
σ̂

r
=

σ

r
−

F(t; Υ, A, P )

r
results in a time-dependent forcing term in the shear PDE.

We make two comments before discussing the internal variable forms. First, if we assume, for example, a single
relaxation time and that its value is small, say on the order of 10−1, then the term K(t−Υ;P ) = exp(−(t−Υ)/τ1) ≈

7



exp(−10(t−Υ)) attains its maximum value exp(10Υ) when t = 0. Note that for, say, Υ < −1, this term is negligible.
Relaxation times on this order are what we can later obtain in the inverse problem, which would imply that in
our case the material is at rest after being loaded sufficiently long that it “forgets” its loading history by the time
the weight is released. This is good from an experimental standpoint, since the loading process will never be quite
uniform. It is also good to know from a computational perspective; we can limit Υ to being greater than some value,
such as −20 < Υ < 0, which will keep the optimization algorithm from marching off unnecessarily (which occurred
in some of our early inverse problem tests). Second, since we have integrated out the loading history, we now start
the model at the time of weight release, t = 0. This means that the material is considered at rest just prior to the
release; thus, in the history integrals we will discuss in the next section, all the history now starts at t = 0 since the
history before that point will be incorporated into the initial loading profile and an initial stress condition.

3.1.6 Internal variable formulation

In the previously noted work on this stenosis problem, the double integrals that resulted from using the continuum of
relaxation times in the stress equation were computationally intractable so another approach was required. The idea
was to use a discrete number of internal variables. As will be noted, these gave rise to a differential form which was
an improvement computationally since it led to purely differential equations in the model rather than inclusion of an
integro-differential equation. With the advances in desktop computation abilities since that time, the integral form
is now reasonable to use in a dynamic model. However, internal variables are still attractive in that they provide
a formulation that indicates some of the internal material dynamics. Physically, if we assume that the molecules
within the biological tissue are on a microscopic scale then the portion of the material which is represented by each
internal variable or internal strain ǫj is being driven by the overall strain and has a response that varies depending
on the value of the corresponding relaxation time τj .

Previous work [8, 42, 50] assumed a discrete internal variable form as an approximation to the Fung kernel, using
the nonlinear constitutive equation (2). This discrete form assumed the kernel G(t) was in an exponential form, with
the effects brought together as a discrete sum in the constitutive equation. The results in [8, 42, 50] demonstrate that
the internal variable approach is valid and does appear to work as well as the continuum of times in the Fung kernel.
A connection between the Fung’s kernel and the discrete kernel is provided by the work in [20]. The authors there

form the kernel G(t) =

∫

T

q(t; τ)dP (τ) where T = [τ1, τ2] ⊂ (0,∞) is the set of admissible relaxation times, P (τ) is

a probability measure on T , and q(t; τ) is a continuous function of relaxation times. If we take q(t; τ) = exp(−t/τ),
this corresponds with the kernels previously discussed. The authors showed existence and uniqueness results for this
kernel in the nonlinear constitutive equation (2). Then, a result from [9] allows one to approximate any measure P (τ)
with a discrete measure. This discrete measure approximation leads us back to the case with a sum of exponentials,
but from the probabilistic framework we know conclusively that we are approximating the continuous spectrum of
Fung’s kernel and that this approximation has been viable when implemented.

With this background on previous work using internal variables in hand, we move forward by modifying our
current model. We manipulate the form of Equation (10) as follows:

σ(t;P ) = (G + ζ) ur(t) + G1urt(t) − ζ

∫ t

0

∂K(t− s;P )

∂s
ur(s)ds

= (G + ζ) ur(t) + G1urt(t) − ζ

∫ t

0

∂

∂s

(∫

T

exp(−(t− s)/τ)dP (τ)

)

ur(s)ds

= (G + ζ) ur(t) + G1urt(t) − ζ

∫

T

ǫ1(t; τ)dP (τ),

(11)

where we let ǫ1(t; τ) =

∫ t

0

∂

∂s
(exp (−(t− s)/τ))ur(s)ds. Rather than the integral form for ǫ1, we can use the

differential form

τ
d

dt
ǫ1(t; τ) + ǫ1(t; τ) = ur(t), ǫ1(0; τ) = 0 (12)

which is then solved simultaneously with the rest of the model dynamics. This is then an internal variable or internal
strain, driven by the overall strain ur(t), which is the continuous form of the internal variable formulation.

We now may finally make the discrete assumption

P (τ) =

Np
∑

j=1

pj∆τj
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where ∆τj is the Heaviside function with step at τj , and pj are the proportions of the material subject to relaxation

time τj so that

Np
∑

j=1

pj = 1. By substituting this discrete P into the form for σ as developed in (11), we obtain the

discrete, internal variable form of the constitutive relationship

σ(t) =



G +

Np
∑

j=1

ζj



 ur(t) + G1urt(t) −

Np
∑

j=1

ζjǫ
j(t), (13a)

with internal variables obeying (for j = 1, 2, . . . , Np)

τj
d

dt
ǫj(t) + ǫj(t) = ur(t), ǫj(0) = 0, (13b)

and where we have defined ζj = ζpj so that ζ =

Np
∑

j=1

ζj , and ǫj = ǫ1(·; τj).

3.2 Final shear wave model

We now put together the shear wave equation (1), using the constitutive equation (13) but with the loading history
approximation incorporated as discussed in Section 3.1.5. Recall also that the discrete assumption for P and the
form of K gives us

ζK(t;P ) = ζ
∑Np

j=1 pj exp(−t/τj) =
∑Np

j=1 ζj exp(−t/τj).

These equations are just manipulated versions of the general equations of Theorem 3.1, so we still know a unique
weak solution exists on any finite time interval.

The shear wave equation, solved for t > 0 which is the release time, are then

ρ
∂2

∂t2
u(r, t) −

∂

∂r
σ(r, t) −

σ(r, t)

r
=

1

r

A

rmax − rmin





Np
∑

j=1

ζj exp(−t/τj) −

Np
∑

j=1

ζj exp(−(t− Υ)/τj)





σ(rmin, t) =
−A

rmax − rmin





Np
∑

j=1

ζj exp(−t/τj) −

Np
∑

j=1

ζj exp(−(t− Υ)/τj)



 , u(rmax, t) = 0

u(r, 0) =
A(rmax − r)

rmax − rmin

, ut(r, 0) = 0,

(14a)

where

σ(t) =



G +

Np
∑

j=1

ζj



ur(t) + G1urt(t) −

Np
∑

j=1

ζjǫ
j(t) (14b)

with the internal variables subject to (for j = 1, 2, . . . , Np)

τj
d

dt
ǫj(t) + ǫj(t) = ur, ǫj(0) = 0. (14c)

We note that G0 = G +

Np
∑

j=1

ζj is the dynamic analog of the shear modulus.

3.3 Numerical method

The shear wave model (14) is numerically solved by using the high order space-time finite element method. Specifi-
cally, in time, we use a discontinuous Galerkin method composed of normalized Legendre polynomials (of order 4). In
space, we use a continuous spectral finite element method composed of Lagrange basis functions on Gauss-Lobatto
nodes (also of order 4). Under this scheme, the system matrices are diagonalizable (this could be lost if we did
not use normalized Legendre polynomials in time), and hence the time-coupled computations within a time step
can be decoupled. This makes the reasonably high order finite element time discretizations feasible. An argument
for adopting such higher order schemes instead of the lower order ones is that higher order spatial discretizations
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have been found highly desirable for wave equations in terms of the control of dispersion errors (e.g., see [1, 23]).
Moreover, higher order schemes are capable of providing higher fidelity solutions than lower order schemes for the
same amount of computational work. This is especially important to make the inverse problem practical (as each
inverse problem may require solving the forward problem (i.e., shear wave model) hundreds of times). Further details
on this numerical method are in a forthcoming BICOM report [38], wherein an extensive set of numerical results
are given to demonstrate the favorable effect on the numerical error and computational work of the higher order
temporal and spatio-temporal approximations.

4 Inverse Problem

With models in hand, we now turn to matching the model output to data. We will use two common methods in
order to estimate model parameters. One is ordinary least squares (OLS) and the other is generalized least squares
(GLS). These will be defined later in Section 4.1.

As discussed in Section 2, an experiment has been designed to gather one-dimensional shear data. Measurements
in our experiment are taken at r = rmin, and will be denoted by uj at measurement time point tj . Corresponding
shear model solutions at the same spatial location will be denoted u(tj ; 10θ), where the measurement location has been
suppressed for notation convenience and where θ represents a vector of the base-10 logarithm of each parameter (the
same idea used previously [13] to reduce parameter scaling issues). The data set has been trimmed to the dynamic
oscillations after the release, and thus the time frame is 200 ms. The data were sampled at a rate of 2048 Hz;
however, this high rate proved to make the inverse problem difficult and computationally intractable because that
many data points resulted in the inverse problem being over determined. Instead, we will use every other data point
from the larger data set for a sampling rate of 1024 Hz which will we later refer to as the “every data point” set.
We take n to be the total number of data points for a particular data set, and thus can describe the measurement
time points for the full “every data point” set as tj = j/1024 where j = 0, 1, . . . , n− 1. There will also be a reduced
data set where we take every other data point starting with t0 = 0, which corresponds with a data sampling rate of
512Hz.

Since some of the data points were near zero in absolute value, we found that those points resulted in scaling
problems when using the GLS model to estimate model parameters (since the corresponding cost functional divides by
the model value as we will see later when this method is defined). To account for this, we removed from consideration
any data points uj where |uj| < 5 × 10−6. This value was chosen by examining the data, noting that the data is on
the order of 10−5 and that the “jitter” one can see in Figure 2 has a magnitude of roughly 5× 10−6 during the times
before loading up to Γ1, then during the settling period from Γ2 to Γ3, and again in the settling period after the
oscillations have died out. Thus, our threshold level is below the level of noise in the data. This level also eliminated
only a few data points, while providing significantly improved GLS robustness. The number of data points n is then
reduced according to how many thresholded data points were removed.

Before going into the setup and results for the inverse problem, we note that the forward (i.e., direct) problem
where we solve for displacement (using the method discussed in Section 3.3) is as follows:

• Forward problem: Given G, G1, τj and ζj for j = 1, 2, . . . , Np, Υ, A, rmin, rmax, and ρ, solve model (14) for
displacement u(r, t) at each position x ∈ [rmax, rmin] for t ∈ [0, T ].

The inverse problem we will develop here is as follows:

• Inverse problem: Given shear displacement data at r = rmin and a corresponding forward problem solver
for displacement, along with specified values for ρ, rmin, and rmax, find values for the constants G, G1, τj and
ζj (for j = 1, 2, . . . , Np), A, and Υ which provide the best fit to the data (in a manner which will be defined
shortly).

We assume that the parameters lie in some admissible set Q ⊂ R
κ, where Q is assumed to be compact and κ is

the number of parameters requiring estimation. Throughout the remainder of this work, we will denote the log-scaled
parameter vector (for Np = 1 and κ = 6) as

θ = (log10(G), log10(G1), log10(ζ1), log10(τ1), log10(−A), log10(−Υ)). (15)

Thus, as long as we define our cost function to be a continuous function of the parameters, we know the inverse
problem has a solution (minimizing a continuous function on a compact parameter space). One could broaden this
parameter estimation framework to the distributional case if desired, taking an admissible parameter space as a
compact subset of Euclidean space (including all parameters excuding relaxation times) along with the space of
probability measures, and use the Prohorov metric framework (see, e.g., [7, 15, Sec. 4]) and the approximation
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results of [9]. This again leads to minimizing a continuous function of the parameters over a compact space. Either
way, the inverse problems we will shortly define will have solutions.

4.1 Statistical Models and Parameter Estimators

In order to carefully define the way in which we will measure the closeness of the data to model values, we must first
discuss underlying statistical models for the error present in the data. A proper error model is also key to correctly
determining parameter confidence intervals. Much of the discussion here is similar to that in [13], with background
on ordinary least squares (OLS) and generalized/weighted least squares (GLS or WLS) given in [22], for example.

We will assume the errors Ej are independent, identically distributed with mean zero (E[Ej ] = 0) and constant
variance var(Ej) = σ2

0 ; this process has realizations εj . Note that we do not assume we know the underlying
distributions from which the errors come; we only know the first two central moments as specified. We use this error
process in proposing two error models and corresponding parameter estimators.

• Absolute error: Here we have the error process Uj = u(tj ; 10θ0) + Ej , with realizations

uj = u(tj; 10θ0) + εj , (16)

where θ0 is some hypothesized “true” parameter value (see [22]). We use the ordinary least squares cost function

Jols(θ) =
n−1
∑

j=0

[uj − u(tj; 10θ)]2.

The corresponding inverse problem for the logged parameters is then

θ̂ols = arg min
θ∈Q

Jols(θ) = arg min
θ∈Q

n−1
∑

j=0

[uj − u(tj ; 10θ)]2. (17)

This function minimizes the distance between the data and model where all observations are considered to have
equal importance (weight). Since u(tj ; 10θ) is a continuous function of θ, Jols is also a continuous function
of θ, which means we are minimizing a continuous function of θ over a compact set Q, and thus this inverse
problem has a solution.

• Relative error: Here we have the error process Uj = u(tj; 10θ0) + u(tj ; 10θ0)Ej with realizations

uj = u(tj ; 10θ0) + u(tj ; 10θ0)εj . (18)

For this case, we construct the generalized (weighted) least squares cost function (as per, e.g., [22])

Jgls(θ) =

n−1
∑

j=0

w2
j [uj − u(tj ; 10θ)]2

where we define the weights wj = u(tj; 10θ)−1. In this case, since we are examining a relative error model
(18), these weights take into account the unequal quality of observations; dividing by the function value has a
“normalizing” effect on the errors, accounting for the scale differences which may be present in the errors at
larger versus smaller model values.

We now wish to find θ such that Jgls(θ) is minimized. We can either solve this directly, or by using an iterative

procedure in order to estimate θ̂gls (since the weights must also be estimated). We will use an iterative method,
described as follows (see [22] and references therein for convergence details):

1. Define θ̂0 = θ̂ols, and set k = 0.

2. Form the weights ŵj = u(tj ; 10θ̂
k

)−1, using weight thresholding (described below).

3. Re-estimate θ̂gls by solving

θ̂k+1 = arg min
θ∈Q

n−1
∑

j=0

ŵj
2[uj − u(tj ; 10θ)]2

to obtain the k + 1 estimate θ̂k+1 for θ̂gls.
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4. Set k = k + 1 and return to Step 2. Terminate when successive estimates for θ̂gls are sufficiently close,
or when one has iterated 20 times. For our problem, our “sufficiently close” criterion was found by
determining if ||θ̂k+1 − θ̂k||∞ ≤ 10−3, where ||θ||∞ is the maximum component of the given vector θ. The
parameter values being estimated are all log-scaled, and are thus on the order of [10−1, 101]. This puts
the stopping criterion at two orders of magnitude less than the smallest log-scaled parameter value, which
is sufficient in our problem.

Even though we have removed all data points with absolute value under 5× 10−6, we still account for the (now
unlikely) possibility that some model values may still end up small in absolute value. Thus, we incorporate
thresholding on the weights to keep from dividing by zero. We take a threshold value of 1 × 10−10, as this is
almost certainly below the threshold of significance in terms of the model displacements. Then, for all indices

j̄ ∈ {k | |u(tk; 10θ̂)| < 1 × 10−10}, we set ŵj̄ = 1 × 1010. This is done each time the weights are re-estimated
in Step 2 of the iterative process.

With weight thresholding, we are assured that the iterative process is possible numerically. Thus, similar to
the ordinary least squares case, at each step k in the iterative GLS estimation process we are minimizing a
continuous function of θ over a compact parameter space Q, and thus the inverse problem in each iteration
will have a solution. Also, as long as the iterative process is carried out sufficiently many times, under certain

conditions the weights will converge ŵj → u(tj ; 10θ̂gls)−1 (see, e.g., [22]).

4.1.1 Optimization considerations

As in [13], we used the Matlab routine lsqnonlin for our optimization routine to solve for θ̂ols and θ̂gls. We used the
trust-region-reflective (TRR) algorithm that is built in; as our previous effort in [13] demonstrated, the Levenburg-
Marquardt option was slower than TRR and did not give us better results. Since we are using at least one relaxation
time, we do not consider fmincon which we have shown to be ineffective in estimating relaxation times.

In order to start the optimization routines for computing θ̂ols, we must provide initial parameter values (for θ̂gls
we use the estimated value for θ̂ols as our initial guess). From a perusal of the viscoelastic materials literature, our
experience with the previous conceptual work, and from some manual examination on the current data sets, we chose
the initial values as follows:

G = 4.5 × 103 Pa, G1 = 5 Pa · s, ζ1 = 2.8 × 104 Pa, τ1 = 0.06 s, A = −1.7 × 10−4 m, Υ = −0.01 s.

As log-scaled values (c.f. (15)), this gives us

θ0gls = (3.6532, 0.6990, 4.4472,−1.2218,−3.7696,−2)T .

4.1.2 Residuals

We will also include residual plots to assist in analysis of the model fit to data, and to indicate which error model
best describes the error in the data. Residuals give a sense for the model fit to data, but more importantly the
residuals can give an indication [22] regarding the appropriateness of our error model. If the absolute residuals seem
to be randomly dispersed around the horizontal axis and form a horizontal band around that axis, then the absolute
error model may be correct. On the other hand, if the (modified) relative residuals seem to be randomly dispersed,
then the relative error model may be correct. We define the following:

• Absolute residuals are computed as rj = uj − u(tj; 10θ̂), where θ̂ is the particular parameter estimate being
considered.

• Relative residuals are computed as rj = ŵj(uj − u(tj ; 10θ̂)) where ŵj = u(tj ; 10θ̂)−1 and the ŵj are thresh-
olded in the same manner as discussed earlier.

4.2 Inverse problem results, Np = 1

We now demonstrate the ability of our model to match data. For this purpose, we will take a single relaxation time
(Np = 1) as that is enough to show model fidelity to data. We run both the absolute (OLS) and relative (GLS) error
models on a sample data set using a 264 g loading weight. We will report parameter estimates, standard errors and
confidence intervals, plots of model fits to data, plots of residuals versus time, and plots of residuals versus model
values. We use these elements in order to recommend error models.
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Standard errors (and corresponding confidence intervals) are computed using asymptotic error theory. For the
absolute error model, the process is the same as that which we used in [13], and is also described in [22, Ch. 3];
for the relative error model, the corresponding asymptotic error methodology is discussed in [22, Ch. 3]. Since the
theory is common enough, we do not reiterate it here and refer interested readers to the aforementioned references.

We have also examined parameter estimation using data sampled at different rates. This allowed for a study of
whether the parameter estimates and associated confidence intervals remain consistent as the number of data points
is reduced. Using fewer data points is also a way of decreasing computational times for the inverse problems. We
ran the inverse problem on each data set and using each error model using all the data points (1024 Hz) and using
every other data point (512 Hz), as discussed at the beginning of Section 4.

Numerical results show that the results for data sampled at 1024 Hz is consistent with those found for the data
sampled at 512 Hz. Hence, we report only the results for data sampled at 512 Hz (all results for data sampling
at 1024 Hz are available in [14]). The parameter estimates and confidence intervals (see [10, 11, 13, 16, 22] for
information on computing confidence intervals), obtained from the inverse problems using OLS and GLS, are shown
in Tables 1-2. We observe from these two tables that the standard errors for the GLS case is larger than in the

Table 1: Shear optimization results and confidence analysis for OLS on a 264 g data set using every other data point.
Param. Estimate SE CI95
log10(G) 3.5431 0.2498 (3.0469, 4.0393)
log10(G1) 0.3753 0.3227 (-0.2657, 1.0164)
log10(τ1) -1.4450 0.2474 (-1.9364, -0.9535)
log10(ζ1) 4.4761 0.0294 (4.4178, 4.5345)
log10(−A) -3.7501 0.0071 (-3.7643, -3.7360)
log10(−Υ) -2.1813 0.2779 (-2.7334, -1.6293)

Shear modulus dynamic analog G0 = 33.423 kPa

Table 2: Shear optimization results and confidence analysis for GLS on a 264 g data set using every other data point.
Param. Estimate SE CI95
log10(G) 3.8649 1.0435 (1.7922, 5.9377)
log10(G1) 0.5449 0.3561 (-0.1625, 1.2523)
log10(τ1) -1.0217 1.0543 (-3.1161, 1.0726)
log10(ζ1) 4.4171 0.2918 (3.8375, 4.9967)
log10(−A) -3.8026 0.0119 (-3.8263, -3.7789)
log10(−Υ) -1.6729 1.3806 (-4.4153, 1.0695)

Shear modulus dynamic analog G0 = 33.454 kPa

OLS case. In addition, we see that the standard error for G1 is on the same order of magnitude as the parameter
estimate itself for both the OLS and GLS results, and the standard errors for τ1 and Υ in the GLS case are also on
the same order of magnitude as their corresponding estimates. This is consistent with the sensitivity results, where
the model output is less sensitive to G1, τ1 and Υ than to G, ζ1, and A (more details are available in [14]).

Model fits as well as residual plots are shown in Figure 3. In all cases, the model fits to data are good. In the
bottom row of Figure 3, the residuals versus model plots are not noticeably different between the OLS and GLS
cases. The initial indication is that we have more confidence in the OLS results. However, the residual versus time
plots (middle row of Figure 3) raise cause for concern. In the OLS residual versus time plots, there is a noticeable
“fan” structure for early times. However, for the GLS error model, the residual versus time plots do not show a fan
structure and are fairly randomly distributed. Since this indicates that the OLS error model may not be correct,
we are inclined to recommend the GLS error model so that we do not mistakenly overstate our confidence in the
parameter estimates, which we could do if we used the parameter estimates from the possibly-wrong OLS case.
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Figure 3: Shear data fit using data sampled at 512 Hz, Np = 1, weight 264 g. (left) OLS results. (right) GLS results.
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5 Discussion and Future Work

We have developed an updated one-dimensional viscoelastic model for tissue and have used experimental data from a
simple homogeneous gel phantom to test the ability of our model to describe wave propagation in the medium. The
data were generated from a drop experiment designed to produce oscillations in the gel of a magnitude comparable
to that produced by blood flow in a stenosed coronary artery impacting the vessel wall, a disturbance which results
in shear wave propagating away from the vessel walls downstream of the blockage. In our inverse problem results as
discussed in Section 4.2, we have shown an ability to consistently model the wave propagation using different error
models and at different data sampling frequencies, obtaining good fits to data in all of our inverse problems. In
addition to a good fit, though, we also examined statistical properties of the parameter estimators as well as residual
plots to gain more insight into the proper error model for the shear data set. This is necessary, since a correct error
model is essential in order to apply the asymptotic error theory properly and thus obtain correct confidence intervals.
We recommend taking the more conservative route and using the GLS parameter estimates; even though the GLS
estimates had larger standard errors, there were indications from the residual versus time plots for OLS that the OLS
model is not correct. Overall, we have successfully demonstrated the ability of mathematical model to accurately
describe the data from laboratory experiments using a homogenous tissue-mimicking material gel phantom. A linear
viscoelastic constitutive relationship, i.e., (14b), was adequate. This is a significant achievement, as all the work
previously discussed was limited to inverse problems on simulated data or data that was not from the impulse-type
experiments.

We do note that both the model and experiments that we studied here, though quite useful as a starting point,
are limited in replicating reality. Two different paths are the likely next steps. First, we are currently examining
a two-dimensional model and corresponding experimental configurations. Experiments are currently in progress to
produce a two-dimensional wave from different points in the medium and with different detection points along the
outer wall of the phantom. It is conceivable that the one-dimensional parameters could be used as a rough first
approximation in a corresponding two-dimensional code, which would allow us to focus on trying to determine the
location of the wave generation in the medium. Also, these parameter values could be used in a model of wave
propagation in another conceptual device designed to mimic a constricted artery and the waves that result from
passing fluid through a constricted pipe in the center of the medium. Therefore in the slightly longer term, we
will also likely need to conduct an inverse problem using a two-dimensional model and corresponding data. These
one-dimensional results will provide a starting point for parameters in that inverse problem, hopefully decreasing
runtime and the time it takes to find viable parameters. The same issues discussed here (sensitivity to parameters,
data frequency, number of relaxation times) will again be of concern for the two-dimensional problem. Future efforts
will also involve scaling up all these experiments to larger phantoms and then to some sort of actual tissue sample
experiments.

Second, the work to this point has still been focused on the simplest problem, that of a homogeneous medium. A
clear next step would be adding inhomogeneous features to the gel phantom to mimic different types of tissue in the
chest cavity. This would likely be formulated initially in the one-dimensional case, so that we could study the model
responses in a simpler framework before moving to a more complicated two-dimensional case. We can increase the
number of internal variables to accommodate different material relaxation properties. The model also allows changes
to the material parameters; for example, we could use piecewise-defined constants to represent different types of
tissue. These two options represent reasonable directions for the next stages of investigation.
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